Differential Equations III Cheat Sheet (A Level Only)

AQA A Level Further Maths: Core

Solving Second Order Non-Homogeneous Differential Equations with Constant Coefficients Using the Complementary Function and Particular Integral
secold

$$
\frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b y=f(x)
$$

where a and b are constants. Notice a coefficient of $\frac{d^{2} y}{d x^{2}}$ can be handled by dividing the whole equation by this coefficient.
Solving second order non-homogeneous differential equations with constant coefficients is more difficult than their associated homogeneous versions (where $f(x)=0)$. However, since their forms are so similar, the general solution of the associated homogenous differential equation, known as the complementary any solution to the non-homogeneous differential equation and depends on $f(x)$. So overall the general solution to the differential equation is:

$$
y=y_{C F}+y_{P I}
$$

Where $y_{C F}$ is the complementary function and $y_{P I}$ is the particular integral. The method for finding the complementary function is covered in the Differential Equations II Cheat Sheet. Finding the particular integral requires guessing a trial function. This choice of trial function depends on the form of $f(x)$. For this course, there are three forms $f(x)$ could take. The table below shows the possible forms of $f(x)$ and the functions which should be trialled, assuming that the
complementary function does not also contain a function of the same form. If the complementary function does contain a function of the same form as the tria function then, like with the general solution for doubled roots of the auxiliary equation, multiply the trial function by x

$$
\begin{array}{|cc|}
\hline f(x) \\
\hline & \text { Polynomial } \\
\hline A e^{b x} \\
a \cos b x \text { or } a \sin b \\
\hline
\end{array}
$$

Example 1: Solve $\frac{\mathrm{d}^{2} y}{\mathrm{~d} \mathrm{x}^{2}}+7 \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=4 x+3$ where at $x=0, y=\frac{20}{9}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{3}$.

Find the roots of the auxiliary equation to the associated homogeneous differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+7 \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=0$.	$0=\lambda^{2}+7 \lambda+6=(\lambda+6)(\lambda+1) \Rightarrow \lambda_{1}=-6, \lambda_{2}=-1$
Write complementary function $y_{C F}$.	$y_{C F}=A e^{-x}+B e^{-6 x}$
Use a polynomial trial function of order 1.	$y_{P I}=p x+q$
Find first and second derivatives of $y_{P l}$.	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{p}, \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=0$
Substitute derivatives into the differential equation.	(0) $+7(p)+6(p x+q) \equiv 4 x+3$
Equate coefficients.	$\begin{gathered} x^{1}: 6 p=4 \Rightarrow \mathrm{p}=\frac{2}{3} \\ x^{0}: 7 p+6 q=3 \Rightarrow \mathrm{q}=\frac{1}{6}\left(3-\frac{14}{3}\right)=-\frac{5}{18} \end{gathered}$
Write particular integral $y_{P I}$.	$y_{P I}=\frac{2}{3} x-\frac{5}{18}$
Sum complementary function and particular integral to obtain the general solution.	$y=y_{C F}+y_{P I}=A e^{-x}+B e^{-6 x}+\frac{2}{3} x-\frac{5}{18}$
Find $\frac{d y}{d y}$ to substitute initial conditions into.	$\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x}=-A e^{-x}-6 B e^{-6 x}+\frac{2}{3} & \Rightarrow \frac{2}{3}=-A e^{-(0)}-6 B e^{-6(0)}+\frac{2}{3} \\ \Rightarrow \mathrm{~A} & =-6 \mathrm{~B} \end{aligned}$
Substitute initial conditions into the general solution.	$\begin{aligned} y=A e^{-x}+B e^{-6 x}+\frac{2}{3} x-\frac{5}{18} & \Rightarrow \frac{20}{9}=A e^{-(0)}+B e^{-6(0)}+\frac{2}{3}(0)-\frac{5}{18} \\ & \Rightarrow \frac{5}{2}-B=A \end{aligned}$
Solve equations simultaneously to obtain A and B.	$-6 B=\frac{5}{2}-B \Rightarrow \mathrm{~B}=-\frac{1}{2} \Rightarrow \mathrm{~A}=3$
Write the particular solution.	$y=3 e^{-x}-\frac{1}{2} e^{-6 x}+\frac{2}{3} x-\frac{5}{18}$

Example 2: Consider the differential equation $x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+(-10 x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}+(25 x-10) y=3 e^{4 x}$ where $x \neq 0$

a) Use the substitution $u=x y$ to rewrite the differential equation as $\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}+\mathrm{a} \frac{\mathrm{d} u}{\mathrm{~d} x}+\mathrm{b} u=3 e^{4 x}$ where a and b are constants to be found.
b) Hence solve $x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+(-10 x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}+(25 x-10) y=3 e^{4 x}$

a) Apply the product rule to $u=x y$ to find $\frac{d u}{d x}$ and $\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}$
Rearrange to make $\frac{\mathrm{dy}}{\mathrm{d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ the subject of the equation respectively.

Substitute into the differential equation and simplify
b) Find the roots of the auxiliary equation to the associated homogeneous differential equation $\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}-10 \frac{\mathrm{~d} u}{\mathrm{~d} x}+25 u=0$.
Write complementary function $u_{C F}$
Use an exponential trial function.
Find first and second derivatives of $y_{P l}$,
substitute derivatives into the differential equation.
Equate coefficients.
Write out $u_{P I}$.
m complementary function and particular integral to obtain the general solution. Rewrite in terms of y.

$\frac{\mathrm{d} u}{\mathrm{~d} x}=y+x \frac{\mathrm{dy}}{\mathrm{~d} x^{\prime}} \quad \frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}=\frac{\mathrm{dy}}{\mathrm{~d} x}+\frac{\mathrm{dy}}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 \frac{\mathrm{dy}}{\mathrm{~d} x}+x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$
$\frac{\mathrm{dy}}{\mathrm{~d} x}=\frac{1}{x}\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}-y\right), \quad x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{dy}}{\mathrm{~d} x}=\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}-2\left(\frac{1}{x}\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}-y\right)\right)$
$\begin{aligned} & \left.\frac{\mathrm{d}^{2} u}{\mathrm{~d} x^{2}}-2\left(\frac{1}{x}\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}-y\right)\right)+(-10 x+2)\left(\frac{1}{x} \frac{\mathrm{~d} u}{\mathrm{~d} x}-y\right)\right)+(25 x-10) y=3 e^{4 x} \\ & \Rightarrow \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}+\left(\frac{-2}{x}-10+\frac{2}{x}\right) \frac{\mathrm{d} u}{\mathrm{~d} x}+\left(\frac{2}{x}+10-\frac{2}{x}-10\right) y+25 u=3 e^{4 x} \\ & \quad \Rightarrow \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}-10 \frac{\mathrm{~d} u}{\mathrm{~d} x}+25 u=3 e^{4 x} \Rightarrow \mathrm{a}=-10, \mathrm{~b}=25 \end{aligned}$
$0=\lambda^{2}-10 \lambda+25=(\lambda-5)^{2} \Rightarrow \lambda=5$
$u_{C F}=(A+B x) e^{5 x}$
$u_{P I}=P e^{4 x}$
$\frac{\mathrm{d} u}{\mathrm{~d} x}=4 \mathrm{P} e^{4 x}, \quad \frac{\mathrm{~d}^{2} u}{\mathrm{~d} x^{2}}=16 P e^{4 x}$
$16 P e^{4 x}-10\left(4 P e^{4 x}\right)+25\left(P e^{4 x}\right) \equiv 3 P e^{4 x}$
$e^{4 x}: 16 P-40 P+25 P=3 P \Rightarrow \mathrm{P}=\frac{1}{3}$
$u_{P I}=\frac{1}{3} e^{4 x}$
$\begin{aligned} u & =u_{C F}+u_{P I}=(A+B x) e^{5 x}+\frac{1}{3} e^{4 x} \\ & \Rightarrow \mathrm{y}=\frac{1}{x}\left((A+B x) e^{5 x}+\frac{1}{3} e^{e x}\right) \end{aligned}$

Example 3: Solve $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=\cos x+e^{2 x}$
Find the roots of the auxiliary equation to the associated homogeneous
differential equation $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0$.
Write complementary function y_{c}
Use a trial function for both trigonometric functions and exponential noticing that $y_{C F}$ contains $e^{2 x}$ so multiply that through by x

Find first and second derivatives of y_{F}

Substitute derivatives into the differential equation.
Equate coefficients. Notice that guessing $x e^{2 x}$ meant that another equatio Equate coefficients. Notice that guessing $x e^{2 x}$ meant that another equation
was obtained and not j ust $0=0$, which is what would have been obtained if just $e^{e x x}$ was guessed.
Solve simultaneous equations to find p and q.

Write out y_{P}

. . Sum com
solution.
$0=\lambda^{2}-3 \lambda+2=(\lambda-1)(\lambda-2) \Rightarrow \lambda_{1}=1, \lambda_{2}=2$

$$
y_{C F}=A e^{x}+B e^{2 x}
$$

$y_{P I}=p \cos x+q \sin x+r x e^{2 x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\mathrm{p}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\mathrm{p} \sin x+q \cos x+r e^{2 x}(1+2 x)$,
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-p \cos x-q \sin x+2 r e^{2 x}(2+2 x)$ $\left.q \sin x+2 r e^{2 x}(2+2 x)\right)$
$-3\left(-\mathrm{p} \sin x+q \cos x+r e^{2 x}(1+2 x)\right)$ $\left.e^{2 x}\right) \equiv \cos x+e^{2 x}$ s. $x \cdot-\mathrm{p}-3 \mathrm{q}+2 \mathrm{p}=1 \Rightarrow \mathrm{p}=1+3 \mathrm{q}$
$\sin x:-\mathrm{q}+3 \mathrm{p}+2 \mathrm{q}=0 \Rightarrow 3 \mathrm{p}+\mathrm{q}=0$ $e^{2 x:} 4 r-3 r=1 \Rightarrow \mathrm{r}=1$
$x e^{2 x:} 4 r-6 r+2 r=0 \Rightarrow 0$ $x e^{2 x}: 4 r-6 r+2 r=0 \Rightarrow 0=0$

$$
y_{P I}=\frac{1}{10} \cos x-\frac{3}{10} \sin x+x e^{2 x}
$$

$y=y_{C F}+y_{P I}=A e^{x}+B e^{2 x}+\frac{1}{10} \cos x-\frac{3}{10} \sin x+x e^{2 x}$www.pmt.education

